Due to their usefulness in various implementations, such as energy evaluation, visibility analysis, emergency response, 3D cadastre, urban planning, change detection, navigation, etc., 3D city models have gained importance over the last decades. Point clouds are one of the primary data sources for the generation of realistic city models. Beside model-driven approaches, 3D building models can be directly produced from classified aerial point clouds. This paper presents an ongoing research for 3D building reconstruction based on the classification of aerial point clouds without given ancillary data (e.g. footprints, etc.). The work includes a deep learning approach based on specific geometric features extracted from the point cloud. The methodology was tested on the ISPRS 3D Semantic Labeling Contest (Vaihingen and Toronto point clouds) showing promising results, although partly affected by the low density and lack of points on the building facades for the available clouds.
CITATION STYLE
Özdemir, E., & Remondino, F. (2019). Classification of aerial point clouds with deep learning. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 42, pp. 103–110). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLII-2-W13-103-2019
Mendeley helps you to discover research relevant for your work.