A novel combination of fruits and vegetables prevents diet-induced hepatic steatosis and metabolic dysfunction in mice

7Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Epidemiological studies suggest that higher fruits and vegetables (F&V) consumption correlates with reduced risk of hepatic steatosis, yet evidence for causality and the underlying mechanisms is lacking. Objectives: We aimed to determine the causal relation between F&V consumption and improved metabolic disorders in mice fed high-fat (HF) (Experiment-1) or normal-fat (Experiment-2) diets and its underlying mechanisms. Methods: Six-week-old male C57BL/6J mice were randomly grouped and fed diets supplemented at 0%-15% (wt:wt) with a freeze-dried powder composed of 24 commonly consumed F&V (human equivalent of 0-9 servings/d) for 20 wk. In Experiment-1, mice were fed an HF (45% kcal fat) diet with 0% (HF0), 5%, 10%, or 15% (HF15) F&V or a matched low-fat control diet (10% kcal fat). In Experiment-2, mice were fed an AIN-93 diet (basal) (B, 16% kcal fat) with 0% (B0), 5%, 10%, or 15% (B15) F&V supplementation. Body weight and composition, food intake, hepatic steatosis, inflammation, ceramide levels, sphingomyelinase activity, and gut microbiota were assessed. Results: In Experiment-1, mice fed the HF15 diet had lower weight gain (17.9%), hepatic steatosis (48.4%), adipose tissue inflammation, blood (24.6%) and liver (33.9%) ceramide concentrations, and sphingomyelinase activity (38.8%) than HF0 mice (P < 0.05 for all). In Experiment-2, mice fed the B15 diet had no significant changes in weight gain but showed less hepatic steatosis (28.5%), blood and adipose tissue inflammation, and lower blood (30.0%) ceramide concentrations than B0 mice (P < 0.05 for all). These F&V effects were associated with favorable microbiota changes. Conclusions: These findings represent the first evidence for a causal role of high F&V intake in mitigating hepatic steatosis in mice. These beneficial effects may be mediated through changes in ceramide and/or gut microbiota, and suggest that higher than currently recommended servings of F&V may be needed to achieve maximum health benefits.

Cite

CITATION STYLE

APA

Guo, W., Wu, D., Dao, M. C., Li, L., Lewis, E. D., Ortega, E. F., … Meydani, S. N. (2020). A novel combination of fruits and vegetables prevents diet-induced hepatic steatosis and metabolic dysfunction in mice. Journal of Nutrition, 150(11), 2950–2960. https://doi.org/10.1093/jn/nxaa259

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free