Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation

81Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We present an analysis of inelastic off-fault response in fluid-saturated material during earthquake shear rupture. The analysis is conducted for 2-D plane strain deformation using an explicit dynamic finite element formulation. Along the fault, linear slip-weakening behavior is specified, and the off-fault material is described using an elastic-plastic description of the Drucker-Prager form, which characterizes the brittle behavior of rocks under compressive stress when the primary mode of inelastic deformation is frictional sliding of fissure surfaces, microcracking and granular flow. In this part (part 1), pore pressure changes were neglected in materials bordering the fault. In part 2, we more fully address the effects of fluid saturation. During the rapid stressing by a propagating rupture, the associated undrained response of the surrounding fluid-saturated material may be either strengthened or weakened against inelastic deformation. We consider poroelastoplastic materials with and without plastic dilation. During nondilatant undrained response near a propagating rupture, large increases in pore pressure on the compressional side of the fault decrease the effective non-nal stress and weaken the material, and decreases in pore pressure on the extensional side strengthen the material. Positive plastic dilatancy reduces pore pressure, universally strengthening the material. Dilatantly strengthened undrained deformation has a diffusive instability on a long enough timescale when the underlying drained deformation is unstable. Neglecting this instability on the short timescale of plastic straining, we show that undrained deformation is notably more resistant to shear localization than predicted by neglect of pore pressure changes. Copyright 2008 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Viesca, R. C., Templeton, E. L., & Rice, J. R. (2008). Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation. Journal of Geophysical Research: Solid Earth, 113(9). https://doi.org/10.1029/2007JB005530

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free