National-Scale Assessment of Total Gaseous Mercury Isotopes Across the United States

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With the 2011 promulgation of the Mercury and Air Toxics Standards by the U.S. Environmental Protection Agency, and the successful negotiation by the United Nations Environment Program of the Minamata Convention, emissions of mercury (Hg) have declined in the United States. While the declines in atmospheric Hg concentrations in North America are encouraging, linking the declines to changing domestic and global source portfolios remains challenging. To address these research gaps, the U.S. Geological Survey initiated the first national-scale effort to establish a baseline of total gaseous mercury stable isotope values at 31 sites distributed across the United States. Results indicated that unique Hg sources, such as Hg evasion from an elemental Hg contaminated site or free tropospheric intrusions in high altitude sites, were distinguishable from background atmospheric values. Minor gradients were observed across the nation, with regions of heavy industrial activity demonstrating lower δ202Hg, but no consistent changes in other isotopes such as Δ199Hg and Δ200Hg were observed. Furthermore, δ202Hg was impacted by foliar uptake and senescence but trends varied between forested regions in the northeastern and midwestern United States. These data demonstrate regional emission sources and other environmental variables can impact total gaseous Hg (TGM) isotope values, highlighting the need to characterize atmospheric Hg isotopes over larger geographical areas to evaluate changes related to national and international Hg regulations.

Cite

CITATION STYLE

APA

Tate, M. T., Janssen, S. E., Lepak, R. F., Flucke, L., & Krabbenhoft, D. P. (2023). National-Scale Assessment of Total Gaseous Mercury Isotopes Across the United States. Journal of Geophysical Research: Atmospheres, 128(8). https://doi.org/10.1029/2022JD038276

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free