High-Throughput Breath Volatile Organic Compound Analysis Using Thermal Desorption Proton Transfer Reaction Time-of-Flight Mass Spectrometry

24Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Breath analysis is highly acceptable to patients and health care professionals, but its implementation in clinical practice remains challenging. Clinical trials and routine practice require a robust system for collection, storage, and processing of large numbers of samples. This work describes a platform based upon the hyphenation of thermal desorption (TD) with proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS), coupled by means of an original modification of the TD interface. The performance of TD-PTR-ToF-MS was tested against seven oxygenated volatile organic compounds (VOCs), belonging to three chemical classes (i.e., fatty acids, aldehydes, and phenols), previously identified as possible biomarkers of colorectal and esophago-gastric adenocarcinoma. Limits of detection and quantification were on the order of 0.2-0.9 and 0.3-1.5 parts per billion by volume (ppbV), respectively. Analytical recoveries from TD tubes were 80% or higher, linear response was in the low- to mid-ppbV range (R2 = 0.98-0.99), and coefficients of variation were within 20% of mean values. The usability of the platform was evaluated in the analysis of a set of breath samples of clinical origin, allowing for a throughput of nearly 100 TD tubes for 24 h of continuous operation. All of these characteristics enhance the implementation of TD-PTR-ToF-MS for large-scale clinical studies.

Cite

CITATION STYLE

APA

Romano, A., Doran, S., Belluomo, I., & Hanna, G. B. (2018). High-Throughput Breath Volatile Organic Compound Analysis Using Thermal Desorption Proton Transfer Reaction Time-of-Flight Mass Spectrometry. Analytical Chemistry, 90(17), 10204–10210. https://doi.org/10.1021/acs.analchem.8b01045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free