We built a web server named APOLLO, which can evaluate the absolute global and local qualities of a single protein model using machine learning methods or the global and local qualities of a pool of models using a pair-wise comparison approach. Based on our evaluations on 107 CASP9 (Critical Assessment of Techniques for Protein Structure Prediction) targets, the predicted quality scores generated from our machine learning and pair-wise methods have an average per-target correlation of 0.671 and 0.917, respectively, with the true model quality scores. Based on our test on 92 CASP9 targets, our predicted absolute local qualities have an average difference of 2.60 Å with the actual distances to native structure. © The Author(s) 2011. Published by Oxford University Press.
CITATION STYLE
Wang, Z., Eickholt, J., & Cheng, J. (2011). APOLLO: A quality assessment service for single and multiple protein models. Bioinformatics, 27(12), 1715–1716. https://doi.org/10.1093/bioinformatics/btr268
Mendeley helps you to discover research relevant for your work.