The 2017 National Academy of Sciences Decadal Survey highlighted several high-priority objectives to be pursued in the decadal timeframe, and the next-generation Cloud, Convection and Precipitation (CCP) observing system is thereby contemplated. In this study, we develop a suite of hybrid Bayesian algorithms to evaluate two CCP remote sensor candidates including a W-band cloud radar and a (sub)millimeter-wave radiometer with channels in the 118-880GHz frequency range for capability in constraining ice cloud microphysical quantities. The algorithms address active-only, passive-only, and synergistic active-passive retrievals. The hybrid Bayesian algorithms combine the Bayesian Monte Carlo integration and optimization process to retrieve quantities with uncertainty estimates. The radar-only retrievals employ the optimal estimation methodology, while the radiometer-involved retrievals employ ensemble approaches to maximize the posterior probability density function. A priori information is obtained from the Tropical Composition, Cloud and Climate Coupling (TC4) in situ data and CloudSat radar observations. End-to-end simulation experiments are conducted to evaluate the retrieval accuracies by comparing the retrieved parameters with known values. The experiment results suggest that the radiometer measurements possess high sensitivity to ice cloud particles with large water content. The radar-only retrievals demonstrate capability in reproducing ice water content profiles, but the performance in retrieving number concentration is poor. The synergistic observations enable improved pixel-level retrieval accuracies, and the improvements in ice water path retrievals are significant. The proposed retrieval algorithms could serve as alternative methods for exploring the synergistic active and passive concept, and the algorithm framework could be extended to the inclusion of other remote sensors to further assess the CCP observing system in future studies. Copyright:
CITATION STYLE
Liu, Y., & Mace, G. G. (2022). Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms. Atmospheric Measurement Techniques, 15(4), 927–944. https://doi.org/10.5194/amt-15-927-2022
Mendeley helps you to discover research relevant for your work.