Gradient Boosting over Linguistic-Pattern-Structured Trees for Learning Protein–Protein Interaction in the Biomedical Literature

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Protein-based studies contribute significantly to gathering functional information about biological systems; therefore, the protein–protein interaction detection task is one of the most researched topics in the biomedical literature. To this end, many state-of-the-art systems using syntactic tree kernels (TK) and deep learning have been developed. However, these models are computationally complex and have limited learning interpretability. In this paper, we introduce a linguistic-pattern-representation-based Gradient-Tree Boosting model, i.e., LpGBoost. It uses linguistic patterns to optimize and generate semantically relevant representation vectors for learning over the gradient-tree boosting. The patterns are learned via unsupervised modeling by clustering invariant semantic features. These linguistic representations are semi-interpretable with rich semantic knowledge, and owing to their shallow representation, they are also computationally less expensive. Our experiments with six protein–protein interaction (PPI) corpora demonstrate that LpGBoost outperforms the SOTA tree-kernel models, as well as the CNN-based interaction detection studies for BioInfer and AIMed corpora.

Cite

CITATION STYLE

APA

Warikoo, N., Chang, Y. C., & Ma, S. P. (2022). Gradient Boosting over Linguistic-Pattern-Structured Trees for Learning Protein–Protein Interaction in the Biomedical Literature. Applied Sciences (Switzerland), 12(20). https://doi.org/10.3390/app122010199

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free