Sequence-selective dynamic covalent assembly of information-bearing oligomers

32Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Relatively robust dynamic covalent interactions have been employed extensively to mediate molecular self-assembly reactions; however, these assembly processes often do not converge to a thermodynamic equilibrium, instead yielding mixtures of kinetically-trapped species. Here, we report a dynamic covalent self-assembly process that mitigates kinetic trapping such that multiple unique oligomers bearing covalently coreactive pendant groups are able to undergo simultaneous, sequence-selective hybridization with their complementary strands to afford biomimetic, in-registry molecular ladders with covalent rungs. Analogous to the thermal cycling commonly employed for nucleic acid melting and annealing, this is achieved by raising and lowering the concentration of a multi-role reagent to effect quantitative dissociation and subsequently catalyze covalent bond rearrangement, affording selective assembly of the oligomeric sequences. The hybridization specificity afforded by this process further enabled information encoded in oligomers to be retrieved through selective hybridization with complementary, mass-labeled sequences.

Cite

CITATION STYLE

APA

Leguizamon, S. C., & Scott, T. F. (2020). Sequence-selective dynamic covalent assembly of information-bearing oligomers. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14607-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free