Stabilizing amplifier with a programmable load line for characterization of nanodevices with negative differential resistance

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Resistive switching devices and other components with negative differential resistance (NDR) are emerging as possible electronic constituents of next-generation computing architectures. Due to the exhibited NDR effects, switching operations are strongly affected by the presence of resistance in series with the memory cell. Experimental measurements useful in the development of these devices use a deliberate addition of series resistance, which can be done either by integrating resistors on-chip or by connecting external components to the wafer probing system. The former approach is considered inflexible because the resistance value attached to a given device cannot be changed or removed, while the latter approach tends to create parasitic effects that impact controllability and interfere with measurements. In this work, we introduce a circuit design for flexible characterization of two-terminal nanodevices that provides a programmatically adjustable external series resistance while maintaining low parasitic capacitance. Experimental demonstrations show the impact of the series resistance on NDR and resistive switching measurements.

Cite

CITATION STYLE

APA

Hennen, T., Wichmann, E., Waser, R., Wouters, D. J., & Bedau, D. (2022). Stabilizing amplifier with a programmable load line for characterization of nanodevices with negative differential resistance. Review of Scientific Instruments, 93(2). https://doi.org/10.1063/5.0080532

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free