Electrical double layer mechanism analysis of PEM water electrolysis for frequency limitation of pulsed currents

8Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

This paper proposes a method for improving hydrogen generation using pulse current in a proton exchange membrane-type electrolyzer (PEMEL). Traditional methods of electrolysis using direct current are known as the simplest approach to produce hydrogen. However, it is highly dependent on environmental variables, such as the temperature and catalyst used, to enhance the rate of electrolysis. Therefore, we propose electrolysis using a pulse current that can apply several dependent variables rather than environmental variables. The proposed method overcomes the difficulties in selecting the frequency of the pulse current by deriving factors affecting hydrogen generation while changing the concentration generated by the cell interface during the pulsed water-electrolysis process. The correlation between the electrolyzer load and the frequency characteristics was analyzed, and the limit value of the applicable frequency of the pulse current was derived through electrical modeling. In addition, the operating characteristics of PEMEL could be predicted, and the PEMEL using the proposed pulse current was verified through experiments.

Cite

CITATION STYLE

APA

Kim, J. H., Oh, C. Y., Kim, K. R., Lee, J. P., & Kim, T. J. (2021). Electrical double layer mechanism analysis of PEM water electrolysis for frequency limitation of pulsed currents. Energies, 14(22). https://doi.org/10.3390/en14227822

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free