Abstract
Mixed tin/lead (Sn/Pb) perovskites have the potential to achieve higher performances in single junction solar cells compared to Pb-based compounds. The best Sn/Pb based devices are fabricated in a p-i-n structure, and PEDOT:PSS is frequently utilized as the hole transport layer, even if there are many doubts on a possible detrimental role of this conductive polymer. Here, we propose the use of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and [2-(3, 6-dibromo-9H-carbazol-9-yl) ethyl] phosphonic acid (Br-2PACz) as substitutes for PEDOT:PSS. By using Cs0.25FA0.75Sn0.5Pb0.5I3 as the active layer, we obtained record efficiencies as high as 19.51% on Br-2PACz, while 18.44% and 16.33% efficiencies were obtained using 2PACz and PEDOT:PSS, respectively. In addition, the implemented monolayers enhance both the shelf lifetime of the device as well as the operational stability. Finally, the Br-2PACz-based devices maintained 80% of their initial efficiency under continuous illumination for 230 h, and after being stored in a N2 atmosphere for 4224 h (176 days).
Cite
CITATION STYLE
Pitaro, M., Alonso, J. S., Di Mario, L., Garcia Romero, D., Tran, K., Zaharia, T., … Loi, M. A. (2023). A carbazole-based self-assembled monolayer as the hole transport layer for efficient and stable Cs0.25FA0.75Sn0.5Pb0.5I3 solar cells. Journal of Materials Chemistry A, 11(22), 11755–11766. https://doi.org/10.1039/d3ta01276j
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.