Decoding the molecular landscape of keloids: new insights from single-cell transcriptomics

5Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Keloids are a fibrotic disease caused by an excessive accumulation of extracellular matrix in the dermis; they have neoplasia-like properties of aggressive growth and high posttreatment recurrence rates. Therefore, it is imperative to gain additional insight into the pathobiology of keloid formation. Single-cell RNA sequencing (scRNA-seq) technology has brought data-driven innovation to understanding the pathogenesis of keloids by breaking the limitations of traditional sequencing technologies to resolve cell composition and to distinguish functional cell subtypes at an unprecedented resolution. The present review aims to cover the application of scRNA-seq technology in keloids and its exploratory findings, including the depiction of the cellular landscape of keloids, fibroblast heterogeneity, the lineage development of Schwann cells and the mesenchymal-activation phenomenon of endothelial cells. Furthermore, scRNA-seq records the transcriptional profiles of fibroblasts and immune cells in a more refined manner, and this gene expression information provides excellent material for inferring intercellular communication networks and lays an important theoretical foundation for future studies.

Cite

CITATION STYLE

APA

Xia, Y., Wang, Y., Shan, M., Hao, Y., & Liang, Z. (2023). Decoding the molecular landscape of keloids: new insights from single-cell transcriptomics. Burns and Trauma. Oxford University Press. https://doi.org/10.1093/burnst/tkad017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free