Isoprene production in transgenic tobacco alters isoprenoid, non-structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress

66Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Isoprene strengthens thylakoid membranes and scavenges stress-induced oxidative species. The idea that isoprene production might also influence isoprenoid and phenylpropanoid pathways under stress conditions was tested. We used transgenic tobacco to compare physiological and biochemical traits of isoprene-emitting (IE) and non-emitting (NE) plants exposed to severe drought and subsequent re-watering. Photosynthesis was less affected by drought in IE than in NE plants, and higher rates were also observed in IE than in NE plants recovering from drought. Isoprene emission was stimulated by mild drought. Under severe drought, isoprene emission declined, and levels of non-volatile isoprenoids, specifically de-epoxidated xanthophylls and abscisic acid (ABA), were higher in IE than in NE plants. Soluble sugars and phenylpropanoids were also higher in IE plants. After re-watering, IE plants maintained higher levels of metabolites, but isoprene emission was again higher than in unstressed plants. We suggest that isoprene production in transgenic tobacco triggered different responses, depending upon drought severity. Under drought, the observed trade-off between isoprene and non-volatile isoprenoids suggests that in IE plants isoprene acts as a short-term protectant, whereas non-volatile isoprenoids protect against severe, long-term damage. After drought, it is suggested that the capacity to emit isoprene might up-regulate production of non-volatile isoprenoids and phenylpropanoids, which may further protect IE leaves. © 2014 John Wiley & Sons Ltd.

Cite

CITATION STYLE

APA

Tattini, M., Velikova, V., Vickers, C., Brunetti, C., Di Ferdinando, M., Trivellini, A., … Loreto, F. (2014). Isoprene production in transgenic tobacco alters isoprenoid, non-structural carbohydrate and phenylpropanoid metabolism, and protects photosynthesis from drought stress. Plant, Cell and Environment, 37(8), 1950–1964. https://doi.org/10.1111/pce.12350

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free