The Functional Relationship between NADPH Thioredoxin Reductase C, 2-Cys Peroxiredoxins, and m-Type Thioredoxins in the Regulation of Calvin–Benson Cycle and Malate-Valve Enzymes in Arabidopsis

4Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The concerted regulation of chloroplast biosynthetic pathways and NADPH extrusion via malate valve depends on f and m thioredoxins (Trxs). The finding that decreased levels of the thiol-peroxidase 2-Cys peroxiredoxin (Prx) suppress the severe phenotype of Arabidopsis mutants lacking NADPH-dependent Trx reductase C (NTRC) and Trxs f uncovered the central function of the NTRC-2-Cys-Prx redox system in chloroplast performance. These results suggest that Trxs m are also regulated by this system; however, the functional relationship between NTRC, 2-Cys Prxs, and m-type Trxs is unknown. To address this issue, we generated Arabidopsis thaliana mutants combining deficiencies in NTRC, 2-Cys Prx B, Trxs m1, and m4. The single trxm1 and trxm4 mutants showed a wild-type phenotype, growth retardation being noticed only in the trxm1m4 double mutant. Moreover, the ntrc-trxm1m4 mutant displayed a more severe phenotype than the ntrc mutant, as shown by the impaired photosynthetic performance, altered chloroplast structure, and defective light-dependent reduction in the Calvin–Benson cycle and malate-valve enzymes. These effects were suppressed by the decreased contents of 2-Cys Prx, since the quadruple ntrc-trxm1m4-2cpb mutant displayed a wild-type-like phenotype. These results show that the activity of m-type Trxs in the light-dependent regulation of biosynthetic enzymes and malate valve is controlled by the NTRC-2-Cys-Prx system.

Cite

CITATION STYLE

APA

Delgado-Requerey, V., Cejudo, F. J., & González, M. C. (2023). The Functional Relationship between NADPH Thioredoxin Reductase C, 2-Cys Peroxiredoxins, and m-Type Thioredoxins in the Regulation of Calvin–Benson Cycle and Malate-Valve Enzymes in Arabidopsis. Antioxidants, 12(5). https://doi.org/10.3390/antiox12051041

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free