Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry

14Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Accelerometry is increasingly used to quantify physical activity (PA) and related energy expenditure (EE). Linear regression models designed to derive PAEE from accelerometry-counts have shown their limits, mostly due to the lack of consideration of the nature of activities performed. Here we tested whether a model coupling an automatic activity/posture recognition (AAR) algorithm with an activity-specific count-based model, developed in 61 subjects in laboratory conditions, improved PAEE and total EE (TEE) predictions from a hip-worn triaxial-accelerometer (ActigraphGT3X+) in free-living conditions. Data from two independent subject groups of varying body mass index and age were considered: 20 subjects engaged in a 3-h urban-circuit, with activity-by-activity reference PAEE from combined heart-rate and accelerometry monitoring (Actiheart); and 56 subjects involved in a 14-day trial, with PAEE and TEE measured using the doubly-labeled water method. PAEE was estimated from accelerometry using the activity-specific model coupled to the AAR algorithm (AAR model), a simple linear model (SLM), and equations provided by the companion-software of used activity-devices (Freedson and Actiheart models). AAR-model predictions were in closer agreement with selected references than those from other count-based models, both for PAEE during the urban-circuit (RMSE = 6.19 vs 7.90 for SLM and 9.62 kJ/min for Freedson) and for EE over the 14-day trial, reaching Actiheart performances in the latter (PAEE: RMSE = 0.93 vs. 1.53 for SLM, 1.43 for Freedson, 0.91 MJ/day for Actiheart; TEE: RMSE = 1.05 vs. 1.57 for SLM, 1.70 for Freedson, 0.95 MJ/day for Actiheart). Overall, the AAR model resulted in a 43% increase of daily PAEE variance explained by accelerometry predictions. NEW & NOTEWORTHY Although triaxial accelerometry is widely used in free-living conditions to assess the impact of physical activity energy expenditure (PAEE) on health, its precision and accuracy are often debated. Here we developed and validated an activity-specific model which, coupled with an automatic activity-recognition algorithm, improved the variance explained by the predictions from accelerometry counts by 43% of daily PAEE compared with models relying on a simple relationship between accelerometry counts and EE.

Cite

CITATION STYLE

APA

Garnotel, M., Bastian, T., Romero-Ugalde, H. M., Maire, A., Dugas, J., Zahariev, A., … Simon, C. (2020). Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry. Journal of Applied Physiology, 124(3), 780–790. https://doi.org/10.1152/JAPPLPHYSIOL.00556.2017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free