Molecular Characterization of High Molecular Weight Polyesters by Matrix-Assisted Laser Desorption/Ionization High-Resolution Time-of-Flight Mass Spectrometry Combined with On-plate Alkaline Degradation and Mass Defect Analysis

25Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Matrix-assisted laser desorption ionization high-resolution time-of-flight mass spectrometry (MALDI HR TOF MS) is a powerful tool for the molecular characterization of industrial polymers. However, accurate mass determination and resolution of isobaric ions are possible for oligomer samples only typically below m/z 3000. To cut long polymer chains into oligomers suitable for high-resolution mass spectrometry, we propose a simple “on-plate” alkaline degradation of polyesters as a sample pretreatment technique prior to the MALDI TOF MS measurement. This pretreatment can be performed on a MALDI target using a small amount of sample (μg or less) and 1 μL of alkaline reagent by simple pipetting. Informative mass spectra in the oligomeric mass range are successfully recorded but complicated by the variation of end-groups and the copolymeric composition of the degradation products. Data processing is assisted by a series of advanced Kendrick mass defect (KMD) analyses recently proposed by the authors to plot visually understandable two-dimensional maps. On-plate degradation pretreatment, high-resolution MALDI TOF MS measurements, and advanced KMD analyses are innovatively combined for the compositional characterization of bacterial poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and industrial poly(ethylene terephthalate) samples. [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Nakamura, S., Fouquet, T., & Sato, H. (2019). Molecular Characterization of High Molecular Weight Polyesters by Matrix-Assisted Laser Desorption/Ionization High-Resolution Time-of-Flight Mass Spectrometry Combined with On-plate Alkaline Degradation and Mass Defect Analysis. Journal of the American Society for Mass Spectrometry, 30(2), 355–367. https://doi.org/10.1007/s13361-018-2092-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free