Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots

56Citations
Citations of this article
125Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The electrocatalytic nitrogen (N2) reduction reaction (NRR) relies on the development of highly efficient electrocatalysts and electrocatalysis systems. Herein, we report a non-loading electrocatalysis system, where the electrocatalysts are dispersed in aqueous solution rather than loading them on electrode substrates. The system consists of aqueous Ag nanodots (AgNDs) as the catalyst and metallic titanium (Ti) mesh as the current collector for electrocatalytic NRR. The as-synthesized AgNDs, homogeneously dispersed in 0.1 M Na2SO4 solution (pH = 10.5), can achieve an NH3 yield rate of 600.4 ± 23.0 μg h−1 mgAg−1 with a faradaic efficiency (FE) of 10.1 ± 0.7% at −0.25 V (vs. RHE). The FE can be further improved to be 20.1 ± 0.9% at the same potential by using Ti mesh modified with oxygen vacancy-rich TiO2 nanosheets as the current collector. Utilizing the aqueous AgNDs catalyst, a Ti plate based two-electrode configured flow-type electrochemical reactor was developed to achieve an NH3 yield rate of 804.5 ± 30.6 μg h−1 mgAg−1 with a FE of 8.2 ± 0.5% at a voltage of −1.8 V. The designed non-loading electrocatalysis system takes full advantage of the AgNDs’ active sites for N2 adsorption and activation, following an alternative hydrogenation mechanism revealed by theoretical calculations.

Cite

CITATION STYLE

APA

Li, W., Li, K., Ye, Y., Zhang, S., Liu, Y., Wang, G., … Zhao, H. (2021). Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots. Communications Chemistry, 4(1). https://doi.org/10.1038/s42004-021-00449-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free