Student Writings with DeepL: Teacher Evaluations and Implications for Teaching

  • Birdsell B
N/ACitations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Technological changes have the power to disrupt standard educational practices. One recent advancement is neural machine translation (NMT) systems such as Google Translate and DeepL which due to their widespread use have already impacted foreign language education. To explore the effect of NMTs on student essay writing and teachers’ evaluation of it, a small-scale study was conducted in which students were divided into two groups, one group used the NMT DeepL and the other did not. English teachers assessed these essays by evaluating them using a standard rubric and then judging whether they believed NMT was used. Results from a Mann-Whitney U Test indicate that teachers tend to evaluate essays that used NMT higher than those that did not and they can accurately judge whether NMT was used. Implications of this study are discussed as well as possible ways to effectively use NMT in the writing classroom. As technology continues to improve, foreign language education also has to evolve with these changes. テクノロジーの変化は、標準的な教育の実践を混乱させる力を持っている。最近の進歩としては、ニューラル機械翻訳(NMT)システムの普及が外国語教育にも影響を与えている。学生と教師双方へのNMTの影響を理解するために、2つのグループの学生を対象に、一方のグループはNMTを使用し、もう一方のグループは使用しないでエッセイを書くという研究を行った。英語教師はこれらのエッセイを標準的なルーブリックで評価し、NMTが使用されているかどうかを判断した。Mann-Whitney U Testの結果から、教師はNMTを使ったエッセイをそうでないエッセイよりも高く評価する傾向があり、NMTを使って書いたかどうかを正確に判断できることが示唆された。本研究の意義は、ライティングの授業でNMTを効果的に使用する方法を議論することにある。テクノロジーが進化し続ける中、外国語教育もその変化に合わせて進化していかなければならない。

Cite

CITATION STYLE

APA

Birdsell, B. (2022). Student Writings with DeepL: Teacher Evaluations and Implications for Teaching. JALT Postconference Publication, 2021(1), 117. https://doi.org/10.37546/jaltpcp2021-14

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free