Skip to content

Why are some Chinese firms failing in the US capital markets? A machine learning approach

0Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We study the market performance of Chinese companies listed in the U.S. stock exchanges using machine learning methods. Predicting the market performance of U.S. listed Chinese firms is a challenging task due to the scarcity of data and the large set of unknown predictors involved in the process. We examine the market performance from three different angles: the underpricing (or short-term market phenomena), the post-issuance stock underperformance (or long-term market phenomena), and the regulatory delistings (IPO failure risk). Using machine learning techniques that can better handle various data problems, we improve on the predictive power of traditional estimations, such as OLS and logit. Our predictive model highlights some novel findings: failed Chinese companies have chosen unreliable U.S. intermediaries when going public, and they tend to suffer from more severe owners-related agency problems.

Cite

CITATION STYLE

APA

Colak, G., Fu, M., & Hasan, I. (2020). Why are some Chinese firms failing in the US capital markets? A machine learning approach. Pacific Basin Finance Journal, 61. https://doi.org/10.1016/j.pacfin.2020.101331

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free