Background: Natural and artificial selection for more than 9000 years have led to a variety of domestic pig breeds. Accurate identification of pig breeds is important for breed conservation, sustainable breeding, pork traceability, and local resource registration. Results: We evaluated the performance of four selectors and six classifiers for breed identification using a wide range of pig breeds (N = 91). The internal cross-validation and external independent testing showed that partial least squares regression (PLSR) was the most effective selector and partial least squares-discriminant analysis (PLS-DA) was the most powerful classifier for breed identification among many breeds. Five-fold cross-validation indicated that using PLSR as the selector and PLS-DA as the classifier to discriminate 91 pig breeds yielded 98.4% accuracy with only 3K single nucleotide polymorphisms (SNPs). We also constructed a reference dataset with 124 pig breeds and used it to develop the web tool iDIGs (http://alphaindex.zju.edu.cn/iDIGs_en/) as a comprehensive application for global pig breed identification. iDIGs allows users to (1) identify pig breeds without a reference population and (2) design small panels to discriminate several specific pig breeds. Conclusions: In this study, we proved that breed identification among a wide range of pig breeds is feasible and we developed a web tool for such pig breed identification.
CITATION STYLE
Miao, J., Chen, Z., Zhang, Z., Wang, Z., Wang, Q., Zhang, Z., & Pan, Y. (2023). A web tool for the global identification of pig breeds. Genetics Selection Evolution, 55(1). https://doi.org/10.1186/s12711-023-00788-0
Mendeley helps you to discover research relevant for your work.