Abstract
High-performance solar-blind photodetectors are widely studied due to their unique significance in military and industrial applications. Yet the rational molecular design for materials to possess strong absorption in solar-blind region is rarely addressed. Here, an organic solar-blind photodetector is reported by designing a novel asymmetric molecule integrated strong solar-blind absorption with high charge transport property. Such alkyl substituted [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) derivatives Cn-BTBTN (n = 6, 8, and 10) can be easily assembled into 2D molecular crystals and perform high mobility up to 3.28 cm2 V−1s−1, which is two orders of magnitude higher than the non-substituted core BTBTN. Cn-BTBTNs also exhibit dramatically higher thermal stability than the symmetric alkyl substituted C8-BTBT. Moreover, C10-BTBTN films with the highest mobility and strongest solar-blind absorption among the Cn-BTBTNs are applied for solar-blind photodetectors, which reveal record-high photosensitivity and detectivity up to 1.60 × 107 and 7.70 × 1014 Jones. Photodetector arrays and flexible devices are also successfully fabricated. The design strategy can provide guidelines for developing materials featuring high thermal stability and stimulating such materials in solar-blind photodetector application.
Author supplied keywords
Cite
CITATION STYLE
Dong, Y., Sun, Y., Liu, J., Shi, X., Li, H., Zhang, J., … Jiang, L. (2022). Thermally Stable Organic Field-Effect Transistors Based on Asymmetric BTBT Derivatives for High Performance Solar-Blind Photodetectors. Advanced Science, 9(12). https://doi.org/10.1002/advs.202106085
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.