Physicochemical and antibacterial properties of composite films based on bacterial cellulose and chitosan for wound dressing materials

19Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

New bacterial cellulose/chitosan (BC/Ch) nanocomposite films were obtained using a simple procedure by immersing BC synthesized by Komagataeibacter xylinus in 1% acetic acid solutions of Ch with the degree of deacetylation 75‒85% of medium molecular weight. The BC and BC/Ch composites chemical composition was examined by FTIR, the mechanical properties by a tensile tester, surface morphology by scanning electron microscopy, and antibacterial activity against S. aureus, E. coli and P. aeruginosa by diffusion and joint incubation methods. The FTIR spectra indicated the intermolecular interaction between BC and Ch. Due to addition of 0.6% (w/v) Ch, the films of BC/Ch become more homogeneous with a significantly denser fibril structure, smaller pore diameter and higher surface area in comparison to those of pure BC films. Micro- (15‒35 nm) and macrofibrils (50‒150 nm) in both BC and BC/Ch films are joined in ribbon-like fibers, providing a high degree of mechanical strength (Young’s modulus: 33‒36 MPa, tensile strength and elongation et break: 17, 22 MPa). The obtained hybrid material is transparent, flexible and displays good water absorption capacity and water vapor permeability. The films have reasonable thermal stability to be in contact with body or during steam sterilization, since maximum degradation temperature (Td) of both biocomposites is around 400‒600 °C. The disc diffusion method confirmed that the BC/Ch films have predominantly non-diffusible antibacterial properties. Antibacterial assessment by the joint incubation method proved that addition of Ch to BC films resulted in significant growth inhibition against target bacteria. The BC/Ch biocomposites’ notable properties make them suitable for wound healing applications.

Cite

CITATION STYLE

APA

Savitskaya, I. S., Kistaubayeva, A. S., Digel, I. E., & Shokatayeva, D. H. (2017). Physicochemical and antibacterial properties of composite films based on bacterial cellulose and chitosan for wound dressing materials. Eurasian Chemico-Technological Journal, 19(3), 255–264. https://doi.org/10.18321/ectj670

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free