On global quantum communication networking

24Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

Abstract

Research in quantum communications networks (QCNs), where multiple users desire to generate or transmit common quantum-secured information, is still in its beginning stage. To solve for the problems of both discrete variable-and continuous variable-quantum key distribution (QKD) schemes in a simultaneous manner as well as to enable the next generation of quantum communication networking, in this Special Issue paper we describe a scenario where disconnected terrestrial QCNs are coupled through low Earth orbit (LEO) satellite quantum network forming heterogeneous satellite-terrestrial QCN. The proposed heterogeneous QCN is based on the cluster state approach and can be used for numerous applications, including: (i) to teleport arbitrary quantum states between any two nodes in the QCN; (ii) to enable the next generation of cyber security systems; (iii) to enable distributed quantum computing; and (iv) to enable the next generation of quantum sensing networks. The proposed QCNs will be robust against various channel impairments over heterogeneous links. Moreover, the proposed QCNs will provide an unprecedented security level for 5G+/6G wireless networks, Internet of Things (IoT), optical networks, and autonomous vehicles, to mention a few.

Cite

CITATION STYLE

APA

Djordjevic, I. B. (2020). On global quantum communication networking. Entropy, 22(8). https://doi.org/10.3390/E22080831

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free