Evolution of cytochrome P-450 proteins

199Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Thirty-four cytochrome P-450 sequences from one bacterial and six vertebrate species have been aligned with the aid of a computer alignment algorithm. Phylogenetic trees were constructed using the unweighted-pair-group and neighbor-joining methods. The two trees differed at only a single branch point near the base of the tree. The cytochrome P-450 superfamily of proteins clustered into eight families and contained 16 gene-duplication events. The first gene duplication occured ~1,360 Myr before the present (Mybp) and gave rise to cytochrome P-450s found in two different cellular organelles, the mitochondria and the endoplasmic reticulum. Both groups utilize cholesterol or its metabolites as substrates, implying that cholesterol existed >1,360 Mybp. The fourth gene duplication (~900 Mybp) gave rise to the drug-metabolizing P-450s. These proteins aid in the detoxification of foreign chemicals, as opposed to the metabolism of endogenous compounds. The importance of the capacity to metabolize drugs is reflected in 11 further gene duplications occurring in this linage. The first occurred ~800 Mybp and gave rise to the two major P-450 families, the phenobarbital and 3-methylcholanthrene families. An apparent increase in the rate of cytochrome P-450 evolution is noted between the bird-mammal divergence (300 Mybp) and the mammalian radiation (75 Mybp).

Cite

CITATION STYLE

APA

Nelson, D. R., & Strobel, H. W. (1987). Evolution of cytochrome P-450 proteins. Molecular Biology and Evolution, 4(6), 572–593. https://doi.org/10.1093/oxfordjournals.molbev.a040490

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free