Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents

28Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We developed a biodegradable polycarbonate that demonstrates antithrombogenicity and vascular cell adhesion via organocatalytic ring-opening polymerization of a trimethylene carbonate (TMC) analogue bearing a methoxy group. The monoether-tagged polycarbonate demonstrates a platelet adhesion property that is 93 and 89% lower than those of poly(ethylene terephthalate) and polyTMC, respectively. In contrast, vascular cell adhesion properties of the polycarbonate are comparable to those controls, indicating a potential for selective cell adhesion properties. This difference in the cell adhesion property is well associated with surface hydration, which affects protein adsorption and denaturation. Fibrinogen is slightly denatured on the monoether-tagged polycarbonate, whereas fibronectin is highly activated to expose the RGD motif for favorable vascular cell adhesion. The surface hydration, mainly induced by the methoxy side chain, also contributes to slowing the enzymatic degradation. Consequently, the polycarbonate exhibits decent blood compatibility, vascular cell adhesion properties, and biodegradability, which is promising for applications in resorbable vascular grafts and stents.

Cite

CITATION STYLE

APA

Fukushima, K., Inoue, Y., Haga, Y., Ota, T., Honda, K., Sato, C., & Tanaka, M. (2017). Monoether-Tagged Biodegradable Polycarbonate Preventing Platelet Adhesion and Demonstrating Vascular Cell Adhesion: A Promising Material for Resorbable Vascular Grafts and Stents. Biomacromolecules, 18(11), 3834–3843. https://doi.org/10.1021/acs.biomac.7b01210

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free