Cost-efficient reconfigurable geometrical bus interconnection system for many-core platforms

1Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

System-on-chip (SoC) embedded computing platforms can support a wide range of next generation embedded artificial intelligence and other computationally intensive applications. These platforms require cost effective interconnection network. Network-on-chip has been widely used today for on-chip interconnection. However, it is still considered expensive for large system sizes. As full bus-based interconnection has high number of bus connections, reduced bus connections might offer considerable implementation economies with relatively small design cost for field programmable gate arrays (FPGAs) based embedded platforms. In this paper, we propose a cost efficient generalized reconfigurable bus-based interconnection for many-core system with reduced number of bus connections. We generalize the system with b number of interconnect buses in which b = min{n, m}/k where n is the number of processor cores, m is the number of memory-modules and k is the general bus reduction factor. We present four geometrical interconnect configurations and provide their characterization in terms of memory bandwidth, cost per bandwidth and bus fault tolerance for various system sizes. Our results show that these configurations provide reduced cost per bandwidth and can achieve higher system throughput with bus cache.

Cite

CITATION STYLE

APA

Ramesh, T., & Abed, K. (2021). Cost-efficient reconfigurable geometrical bus interconnection system for many-core platforms. International Journal of Reconfigurable and Embedded Systems, 10(2), 77–89. https://doi.org/10.11591/ijres.v10.i2.pp77-89

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free