Negative Patient Descriptors: Documenting Racial Bias In The Electronic Health Record

268Citations
Citations of this article
268Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Little is known about how racism and bias may be communicated in the medical record. This study used machine learning to analyze electronic health records (EHRs) from an urban academic medical center and to investigate whether providers’ use of negative patient descriptors varied by patient race or ethnicity. We analyzed a sample of 40,113 history and physical notes (January 2019–October 2020) from 18,459 patients for sentences containing a negative descriptor (for example, resistant or noncompliant) of the patient or the patient’s behavior. We used mixed effects logistic regression to determine the odds of finding at least one negative descriptor as a function of the patient’s race or ethnicity, controlling for sociodemographic and health characteristics. Compared with White patients, Black patients had 2.54 times the odds of having at least one negative descriptor in the history and physical notes. Our findings raise concerns about stigmatizing language in the EHR and its potential to exacerbate racial and ethnic health care disparities.

Cite

CITATION STYLE

APA

Sun, M., Oliwa, T., Peek, M. E., & Tung, E. L. (2022). Negative Patient Descriptors: Documenting Racial Bias In The Electronic Health Record. Health Affairs, 41(2), 203–211. https://doi.org/10.1377/hlthaff.2021.01423

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free