Plasmonic sensing studies of a gas-phase cystic fibrosis marker in moisture laden air

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A plasmonic sensing platform was developed as a noninvasive method to monitor gas-phase biomarkers related to cystic fibrosis (CF). The nanohole array (NHA) sensing platform is based on localized surface plasmon resonance (LSPR) and offers a rapid data acquisition capability. Among the numerous gas-phase biomarkers that can be used to assess the lung health of CF patients, acetaldehyde was selected for this investigation. Previous research with diverse types of sensing platforms, with materials ranging from metal oxides to 2-D materials, detected gas-phase acetalde-hyde with the lowest detection limit at the µmol/mol (parts-per-million (ppm)) level. In contrast, this work presents a plasmonic sensing platform that can approach the nmol/mol (parts-per-billion (ppb)) level, which covers the required concentration range needed to monitor the status of lung infection and find pulmonary exacerbations. During the experimental measurements made by a spectrometer and by a smartphone, the sensing examination was initially performed in a dry air background and then with high relative humidity (RH) as an interferent, which is relevant to exhaled breath. At a room temperature of 23.1◦C, the lowest detection limit for the investigated plasmonic sensing platform under dry air and 72% RH conditions are 250 nmol/mol (ppb) and 1000 nmol/mol (ppb), respectively.

Cite

CITATION STYLE

APA

Sun, L., Conrad, D., Hall, D. A., Benkstein, K. D., Semancik, S., & Zaghloul, M. E. (2021). Plasmonic sensing studies of a gas-phase cystic fibrosis marker in moisture laden air. Sensors, 21(11). https://doi.org/10.3390/s21113776

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free