Optimization of deep learning using various optimizers, loss functions and dropout

ISSN: 22783075
5Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Deep Learning is gaining lot of prominence due to its break through results in various fields like Computer Vision, Natural Language Processing, Time Series Analysis, Health Care etc. Earlier, the Deep Learning was implemented using the batch and stochastic gradient descent algorithms and some optimizers which lead to very less performance of the models. But today, lot of work is going on for the enhancement of the performance of Deep Learning using various optimization techniques. So, in this context, It is proposed to build a Deep Learning model using various Optimizers (Adagrad, RmsProp, Adam), Loss functions (mean squared error, binary cross entropy) and Dropout concept for the Convolutional neural networks and Recurrent neural networks and verify the performance such as Accuracy and Loss of the model. The proposed model has achieved maximum Accuracy when Adam optimizer and mean squared error loss function are applied on convolutional neural networks and the model is run with minimum Loss when the same Adam optimizer and mean squared error loss function are applied on Recurrent neural networks. While performing the Regularization of the model, the maximum Accuracy is achieved when the Dropout with a minimum fraction ‘p’ of nodes is applied on convolutional neural networks and the model has run with minimum Loss when the same dropout value is applied on Recurrent neural networks.

Cite

CITATION STYLE

APA

Reddy, S. V. G., Thammi Reddy, K., & Valli Kumari, V. (2018). Optimization of deep learning using various optimizers, loss functions and dropout. International Journal of Innovative Technology and Exploring Engineering, 8(2S), 272–279.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free