Silver Nanoparticles-Decorated Titanium Oxynitride Nanotube Arrays for Enhanced Solar Fuel Generation

40Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We demonstrate, for the first time, the synthesis of highly ordered titanium oxynitride nanotube arrays sensitized with Ag nanoparticles (Ag/TiON) as an attractive class of materials for visible-light-driven water splitting. The nanostructure topology of TiO2, TiON and Ag/TiON was investigated using FESEM and TEM. The X-ray photoelectron spectroscopy (XPS) and the energy dispersive X-ray spectroscopy (EDS) analyses confirm the formation of the oxynitride structure. Upon their use to split water photoelectrochemically under AM 1.5 G illumination (100 mW/cm2, 0.1 M KOH), the titanium oxynitride nanotube array films showed significant increase in the photocurrent (6 mA/cm2) compared to the TiO2 nanotubes counterpart (0.15 mA/cm2). Moreover, decorating the TiON nanotubes with Ag nanoparticles (13 ± 2 nm in size) resulted in exceptionally high photocurrent reaching 14 mA/cm2 at 1.0 VSCE. This enhancement in the photocurrent is related to the synergistic effects of Ag decoration, nitrogen doping, and the unique structural properties of the fabricated nanotube arrays.

Cite

CITATION STYLE

APA

Soliman, K. A., Zedan, A. F., Khalifa, A., El-Sayed, H. A., Aljaber, A. S., Alqaradawi, S. Y., & Allam, N. K. (2017). Silver Nanoparticles-Decorated Titanium Oxynitride Nanotube Arrays for Enhanced Solar Fuel Generation. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02124-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free