Rapid Cyanobacteria Species Identification with High Sensitivity Using Native Mass Spectrometry

7Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cyanobacteria have evolved over billions of years to adapt and survive in diverse climates. Environmentally, this presents a huge challenge because cyanobacteria can now rapidly form algae blooms that are detrimental to aquatic life. In addition, many cyanobacteria produce toxins, making them hazardous to animals and humans that they encounter. Rapid identification of cyanobacteria is essential to monitor and prevent toxic algae blooms. Here, we show for the first time how native mass spectrometry can quickly and precisely identify cyanobacteria from diverse aquatic environments. By monitoring phycobiliproteins, abundant protein complexes within cyanobacteria, simple, easy-to-understand mass spectral “fingerprints” were created that were unique to each species. Moreover, our method is 10-fold more sensitive than the current MALDI-TOF mass spectrometric methods, meaning that cyanobacteria can be monitored using this technology prior to bloom formation. Together, the data show great promise for the simultaneous detection and identification of co-existing cyanobacteriain situ.

Cite

CITATION STYLE

APA

Sound, J. K., Peters, A., Bellamy-Carter, J., Rad-Menéndez, C., MacKechnie, K., Green, D. H., & Leney, A. C. (2021). Rapid Cyanobacteria Species Identification with High Sensitivity Using Native Mass Spectrometry. Analytical Chemistry, 93(42), 14293–14299. https://doi.org/10.1021/acs.analchem.1c03412

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free