In this paper, we present a study on coverage missions carried out by UAV formations in 3D environments. These missions are designed to be applied in tracking and search and rescue missions, especially in the case of accidents. In this manner, the presented method focuses on the path planning stage, the objective of which is to compute a convenient trajectory to completely cover a certain area in a determined environment. The methodology followed uses a Gaussian mixture to approximate a probability of containment distribution along with the Fast Marching Square (FM2) as path planner. The Gaussians permit to define a zigzag trajectory that optimizes the path. Next, a first 2D geometric path perpendicular to the Voronoi diagram of the Gaussian distribution is calculated, obtained by skeletonization. To this path, the height above the ground is added plus the desired flight height to make it 3D. Finally, the FM2 method for formations is applied to make the path smooth and safe enough to be followed by UAVs. The simulation experiments show that the proposed method achieves good results for the zigzag path in terms of smoothness, safety and distance to cover the desired area through the formation of UAVs.
CITATION STYLE
Garrido, S., Muñoz, J., López, B., Quevedo, F., Monje, C. A., & Moreno, L. (2023). Fast Marching Techniques for Teaming UAV’s Applications in Complex Terrain. Drones, 7(2). https://doi.org/10.3390/drones7020084
Mendeley helps you to discover research relevant for your work.