Metabolic remodeling in hypertrophied and failing myocardium: A review

75Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including “pathological” hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.

Cite

CITATION STYLE

APA

Peterzan, M. A., Lygate, C. A., Neubauer, S., & Rider, O. J. (2017, September 12). Metabolic remodeling in hypertrophied and failing myocardium: A review. American Journal of Physiology - Heart and Circulatory Physiology. American Physiological Society. https://doi.org/10.1152/ajpheart.00731.2016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free