Impacts of the Madden-Julian oscillation (MJO) on Australian rainfall and circulation are examined during all four seasons. The authors examine circulation anomalies and a number of different rainfall metrics, each composited contemporaneously for eight MJO phases derived from the real-time multivariate MJO index. Multiple rainfall metrics are examined to allow for greater relevance of the information for applications. The greatest rainfall impact of the MJO occurs in northern Australia in (austral) summer, although in every season rainfall impacts of various magnitude are found in most locations, associated with corresponding circulation anomalies. In northern Australia in all seasons except winter, the rainfall impact is explained by the direct influence of the MJO's tropical convective anomalies, while in winter a weaker and more localized signal in northern Australia appears to result from the modulation of the trade winds as they impinge upon the eastern coasts, especially in the northeast. In extratropical Australia, on the other hand, the occurrence of enhanced (suppressed) rainfall appears to result from induced upward (downward) motion within remotely forced extratropical lows (highs), and from anomalous low-level northerly (southerly) winds that transport moisture from the tropics. Induction of extratropical rainfall anomalies by remotely forced lows and highs appears to operate mostly in winter, whereas anomalous meridional moisture transport appears to operate mainly in the summer, autumn, and to some extent in the spring. © 2009 American Meteorological Society.
CITATION STYLE
Wheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H., & Donald, A. (2009). Impacts of the Madden-Julian oscillation on australian rainfall and circulation. Journal of Climate, 22(6), 1482–1498. https://doi.org/10.1175/2008JCLI2595.1
Mendeley helps you to discover research relevant for your work.