Porous adsorber membranes are promising materials for the removal of charged pol-lutants, such as heavy metal ions or organic dyes as model substances for pharmaceuticals from water. Here, we present the surface grafting of polyethylene terephthalate (PET) track-etched membranes having well defined cylindrical pores of 0.2 or 1 µm diameter with two polyelectrolytes, poly(2-acrylamido glycolic acid) (PAGA) and poly(N-acetyl dehydroalanine) (PNADha). The poly-electrolyte functionalised membranes were characterised by changes in wettability and hydraulic permeability in response to the external stimuli pH and the presence of Cu2+ ions. The response of the membranes proved to be consistent with functionalisation inside the pores, and the change of grafted polyelectrolyte macro-conformation was due to the reversible protonation or binding of Cu2+ ions. Moreover, the adsorption of the model dye methylene blue was studied and quanti-fied. PAGA-grafted membranes showed an adsorption behavior following the Langmuir model for methylene blue.
CITATION STYLE
Wiedenhöft, L., Elleithy, M. M. A., Ulbricht, M., & Schacher, F. H. (2021). Polyelectrolyte functionalisation of track etched membranes: Towards charge-tuneable adsorber materials. Membranes, 11(7). https://doi.org/10.3390/membranes11070509
Mendeley helps you to discover research relevant for your work.