Elucidating the Impact of Li3InCl6-Coated LiNi0.8Co0.15Al0.05O2 on the Electro-Chemo-Mechanics of Li6PS5Cl-Based Solid-State Batteries

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Li6PS5Cl has attracted significant attention due to its high Li-ion conductivity and processability, facilitating large-scale solid-state battery applications. However, when paired with high-voltage cathodes, it experiences adverse side reactions. Li3InCl6 (LIC), known for its higher stability at high voltages and moderate Li-ion conductivity, is considered a catholyte to address the limitations of Li6PS5Cl. To extend the stability of Li6PS5Cl toward LiNi0.8Co0.15Al0.05O2 (NCA), we applied nanocrystalline LIC as a 180 nm-thick protective coating in a core-shell-like fashion (LIC@NCA) via mechanofusion. Solid-state batteries with LIC@NCA allow an initial discharge specific capacity of 148 mA h/g at 0.1C and 80% capacity retention for 200 cycles at 0.2C with a cutoff voltage of 4.2 V (vs Li/Li+), while cells without LIC coating suffers from low initial discharge capacity and poor retention. Using a wide spectrum of advanced characterization techniques, such as operando XRD, XPS, FIB-SEM, and TOF-SIMS, we reveal that the superior performance of solid-state batteries employing LIC@NCA is related to the suppression of detrimental interfacial reactions of NCA with Li6PS5Cl, delamination, and particle cracking compared to uncoated NCA.

Cite

CITATION STYLE

APA

Jin, F., Fadillah, L., Nguyen, H. Q., Sandvik, T. M., Liu, Y., García-Martín, A., … Rettenwander, D. (2024). Elucidating the Impact of Li3InCl6-Coated LiNi0.8Co0.15Al0.05O2 on the Electro-Chemo-Mechanics of Li6PS5Cl-Based Solid-State Batteries. Chemistry of Materials, 36(12), 6017–6026. https://doi.org/10.1021/acs.chemmater.4c00515

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free