Numerical modelling is playing an increasing role in the interpretation of geological observations. A similar phenomenon is occurring with respect to the interpretation of the stress–strain response of intact rock measured in laboratory tests. In this research, the three-dimensional (3D) bonded particle model (BPM) with flat-jointed (FJ) contact was used to investigate the impact of stress paths on rock failure. The modified FJ contact model used for these studies numerically captured most of the intact rock behavior of Lac du Bonnet granite observed in the laboratory. A numerical simulation was used to track the behavior of this rock for different stress paths, starting with uniaxial tension and compression loading conditions. The migration from uniaxial tension to triaxial compression is challenging to simulate in physical laboratory tests but commonly observed around underground excavations. The numerical modelling methodology developed for this research tracks this stress path and the impact of the intermediate stress on peak strength at low confinements, commonly found around underground excavations.
CITATION STYLE
Patel, S., & Martin, C. D. (2020). Effect of stress path on the failure envelope of intact crystalline rock at low confining stress. Minerals, 10(12), 1–22. https://doi.org/10.3390/min10121119
Mendeley helps you to discover research relevant for your work.