Metal-doped mesoporous ZrO2catalyzed chemoselective synthesis of allylic alcohols from Meerwein-Ponndorf-Verley reduction of α,β-unsaturated aldehydes

18Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Meerwein-Ponndorf-Verley reduction (MPVr) is a sustainable route for the chemoselective transformation of α,β-unsaturated aldehydes. However, tailoring ZrO2 catalysts for improved surface-active sites and maximum performance in the MPV reaction is still a challenge. Here, we synthesized mesoporous zirconia (ZrO2) and metal-doped zirconia (M_ZrO2, M = Cr, Mn, Fe, and Ni). The incorporation of metal dopants into zirconia's crystal framework alters its physico-chemical properties such as surface area and total acidity-basicity. The prepared catalysts were evaluated in the MPVr using 2-propanol as a hydrogen donor under mild reaction conditions. The catalysts' remarkable reactivity depends mainly on their surface mesostructure's intrinsic properties rather than the specific surface area. Cr_ZrO2, which is stable and sustainable, presented superior activity and 100% selectivity to unsaturated alcohols. The synergistic effect between Cr and Zr species in the binary oxide facilitated the Lewis acidity-induced performance of the Cr_ZrO2 catalyst. Our work presents the first innovative application of a well-designed mesoporous Cr_ZrO2 in the green synthesis of unsaturated alcohols with exceptional reactivity. This journal is

Cite

CITATION STYLE

APA

Akinnawo, C. A., Bingwa, N., & Meijboom, R. (2021). Metal-doped mesoporous ZrO2catalyzed chemoselective synthesis of allylic alcohols from Meerwein-Ponndorf-Verley reduction of α,β-unsaturated aldehydes. New Journal of Chemistry, 45(17), 7878–7892. https://doi.org/10.1039/d1nj00936b

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free