Human-like smelling of a rose scent using an olfactory receptor nanodisc-based bioelectronic nose

N/ACitations
Citations of this article
76Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We report a strategy for the human-like smelling of a rose scent utilizing olfactory receptor nanodisc (ND)-based bioelectronic nose devices. In this strategy, a floating electrode (FE)-based carbon nanotube (CNT) field effect transistor (FET) was functionalized with human olfactory receptor 1A2 (hOR1A2)-embedded NDs (hOR1A2NDs). The hOR1A2NDs responded to rose scent molecules specifically, which were monitored electrically using the underlying CNT-FET. This strategy allowed us to quantitatively assess the contents of geraniol and citronellol, the main components of a rose scent, as low as 1 fM and 10 fM, respectively. In addition, it enabled us to selectively discriminate a specific rose odorant from other odorants. Significantly, we also demonstrated that the responses of hOR1A2NDs to a rose scent could be strongly enhanced by enhancer materials like a human nose. Furthermore, the method provided a means to quantitatively evaluate rose scent components in real samples such as rose oil. Since our method allows one to quantitatively evaluate general rose scent ingredients just like a human nose, it could be a powerful strategy for versatile basic research and various applications such as fragrance development.

Cite

CITATION STYLE

APA

Lee, M., Yang, H., Kim, D., Yang, M., Park, T. H., & Hong, S. (2018). Human-like smelling of a rose scent using an olfactory receptor nanodisc-based bioelectronic nose. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32155-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free