Abstract
Delineation of key molecules that act epigenetically to transduce diverse stressors into established patterns of disease would facilitate the advent of preventive and disease-modifying therapeutics for a host of neurological disorders. Herein, we demonstrate that selective overexpression of the stress protein heme oxygenase-1 (HO-1) in astrocytes of novel GFAP.HMOX1 transgenic mice results in subcortical oxidative stress and mitochondrial damage/autophagy; diminished neuronal reelin content (males); induction of Nurr1 and Pitx3 with attendant suppression of their targeting miRNAs, 145 and 133b; increased tyrosine hydroxylase and α-synuclein expression with downregulation of the targeting miR-7b of the latter; augmented dopamine and serotonin levels in basal ganglia; reduced D 1 receptor binding in nucleus accumbens; axodendritic pathology and altered hippocampal cytoarchitectonics; impaired neurovascular coupling; attenuated prepulse inhibition (males); and hyperkinetic behavior. The GFAP.HMOX1 neurophenotype bears resemblances to human schizophrenia and other neurodevelopmental conditions and implicates glial HO-1 as a prime transducer of inimical (endogenous and environmental) influences on the development of monoaminergic circuitry. Containment of the glial HO-1 response to noxious stimuli at strategic points of the life cycle may afford novel opportunities for the effective management of human neurodevelopmental and neurodegenerative conditions. © 2012 the authors.
Cite
CITATION STYLE
Song, W., Zukor, H., Lin, S. H., Hascalovici, J., Liberman, A., Tavitian, A., … Schipper, H. M. (2012). Schizophrenia-like features in transgenic mice overexpressing human HO-1 in the astrocytic compartment. Journal of Neuroscience, 32(32), 10841–10853. https://doi.org/10.1523/JNEUROSCI.6469-11.2012
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.