Background: Endoscopic lung volume reduction by coils (LVRC) is a recent treatment approach for severe emphysema. Furthermore, dual-energy computed tomography (DECT) now offers a combined assessment of lung morphology and pulmonary perfusion. Objectives: The aim of our study was to assess the impact of LVRC on pulmonary perfusion with DECT. Methods: Seventeen patients (64.8 ± 6.7 years) underwent LVRC. DECT was performed prior to and after LVRC. For each patient, lung volumes and emphysema quantification were automatically calculated. Then, 6 regions of interest (ROIs) on the iodine perfusion map were drawn in the anterior, mid, and posterior right and left lungs at 4 defined levels. The ROI values were averaged to obtain lung perfusion as assessed by the lung's iodine concentration (CLung, μg·cm-3). The CLung values were normalized using the left atrial iodine concentration (CLA) to take into account differences between successive DECT scans. Results: The 6-min walk distance (6MWD) improved significantly after the procedure (p = 0.0002). No lung volume changes were observed between successive DECT scans for any of the patients (p = 0.32), attesting the same suspended inspiration. After LVRC, the emphysema index was significantly reduced in the treated lung (p = 0.0014). Lung perfusion increased significantly adjacent to the treated areas (CLung/CLA from 3.4 ± 1.7 to 5.6 ± 2.2, p < 0.001) and in the ipsilateral untreated areas (from 4.1 ± 1.4 to 6.6 ± 1.7, p < 0.001), corresponding to a mean 65 and 61% increase in perfusion, respectively. No significant difference was observed in the contralateral upper and lower areas (from 4.4 ± 1.9 to 4.8 ± 2.1, p = 0.273, and from 4.9 ± 2.0 to 5.2 ± 1.7, p = 0.412, respectively). A significant correlation between increased 6MWD and increased perfusion was found (p = 0.0027, R2 = 0.3850). Conclusions: Quantitative analysis based on DECT acquisition revealed that LVRC results in a significant increase in perfusion in the coil-free areas adjacent to the treated ones, as well as in the ipsilateral untreated areas. This suggests a possible role for LVRC in the improvement of the ventilation/perfusion relationship.
CITATION STYLE
Lador, F., Hachulla, A. L., Hohn, O., Plojoux, J., Ronot, M., Montet, X., & Soccal, P. M. (2016). Pulmonary Perfusion Changes as Assessed by Contrast-Enhanced Dual-Energy Computed Tomography after Endoscopic Lung Volume Reduction by Coils. Respiration, 92(6), 404–413. https://doi.org/10.1159/000452477
Mendeley helps you to discover research relevant for your work.