Abstract
A stochastic constitutive model has been developed that explicitly acknowledges the nanometer size dynamic heterogeneity of glassy materials, where the distribution of the viscoelastic relaxation times emerges naturally as a result of the dynamic heterogeneity. A set of stochastic differential equations for local stresses and entropy describing behavior of a mesoscopic domain are developed, and the observed macroscopic response of the material is obtained as an average of an ensemble of domains. The stochastic constitutive model naturally predicts and provides a mechanism for the postyield stress softening and its dependence on physical aging that is observed during constant strain rate uniaxial deformations. © 2013 The Society of Rheology.
Cite
CITATION STYLE
Medvedev, G. A., & Caruthers, J. M. (2013). Development of a stochastic constitutive model for prediction of postyield softening in glassy polymers. Journal of Rheology, 57(3), 949–1002. https://doi.org/10.1122/1.4801958
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.