Anomalous Diffusion and Surface Effects on the Electric Response of Electrolytic Cells

10Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

We propose an anomalous diffusion approach to analyze the electrical impedance response of electrolytic cells using time-fractional derivatives. We establish, in general terms, the conservation laws connected to a modified displacement current entering the fractional approach formulation of the Poisson–Nernst–Planck (PNP) model. In this new formalism, we obtain analytical expressions for the electrical impedance for the case of blocking electrodes and in the presence of general integrodifferential boundary conditions including time-fractional derivatives of distributed order. A conceptual scenario thus emerges aimed at exploring anomalous diffusion and surface effects on the impedance response of the cell to an external stimulus.

Cite

CITATION STYLE

APA

Scarfone, A. M., Barbero, G., Evangelista, L. R., & Lenzi, E. K. (2022). Anomalous Diffusion and Surface Effects on the Electric Response of Electrolytic Cells. Physchem, 2(2), 163–178. https://doi.org/10.3390/physchem2020012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free