Abstract
Corn straw- and municipal sludge-derived biochars (CS-BC and MS-BC, respectively) were used to remove Pb(II) from aqueous solutions. Despite being pyrolysed at the same temperature (723 K), MS-BC showed higher porosity and hydrophobicity than CS-BC. The optimum biochar loading and pH values allowing efficient Pb(II) removal (greater than 80%) were 0.2 g l−1 and 7.0, respectively. The presence of PO43− (greater than 0.01 mol l−1) significantly affected the adsorptive performance of Pb(II) on the biochar samples. The adsorption data fitted well to a pseudo-second-order kinetic model and a Langmuir model, and the maximum Pb(II) adsorption capacities were 352 and 387 mg g−1 for CS-BC and MS-BC, respectively. The main mechanisms involved in the adsorption of Pb(II) on biochar were electrostatic attraction and surface complexation. When comparing both biochars, CS-BC showed better cost-effectiveness for the removal of Pb(II) from aqueous solutions.
Author supplied keywords
Cite
CITATION STYLE
Wang, S., Guo, W., Gao, F., & Yang, R. (2017). Characterization and Pb(II) removal potential of corn straw- and municipal sludge-derived biochars. Royal Society Open Science, 4(9). https://doi.org/10.1098/rsos.170402
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.