Robust hierarchical 3D carbon foam electrode for efficient water electrolysis

31Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Herein we report a 3D heterostructure comprising a hierarchical macroporous carbon foam that incorporates mesoporous carbon nanotubes decorated with cobalt oxide nanoparticles as an unique and highly efficient electrode material for the oxygen evolution reaction (OER) in electrocatalytic water splitting. The best performing electrode material showed high stability after 10 h, at constant potential of 1.7 V vs. RHE (reversible hydrogen electrode) in a 0.1 M KOH solution and high electrocatalytic activity in OER with low overpotential (0.38 V vs RHE at 10 mA cm-2). The excellent electrocatalytic performance of the electrode is rationalized by the overall 3D macroporous structure and with the firmly integrated CNTs directly grown on the foam, resulting in a large specific surface area, good electrical conductivity, as well as an efficient electrolyte transport into the whole electrode matrix concurrent with an ability to quickly dispose oxygen bubbles into the electrolyte. The eminent properties of the three-dimensional structured carbon matrix, which can be synthesized through a simple, scalable and cost effective pyrolysis process show that it has potential to be implemented in large-scale water electrolysis systems.

Cite

CITATION STYLE

APA

Pham, T. N., Sharifi, T., Sandström, R., Siljebo, W., Shchukarev, A., Kordas, K., … Mikkola, J. P. (2017). Robust hierarchical 3D carbon foam electrode for efficient water electrolysis. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-05215-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free