Abstract
By their diversity in time, space, and mode, traditional and conservation agricultures can create barriers limiting pathogen evolution and spread analogous to a sterilizing temperature. Large-scale monocropping and confined animal feeding-lot operations remove such barriers, resulting, above agroecologically specific thresholds, in the development and wide propagation of novel disease strains. We apply a newly developed class of necessary-conditions statistical models of evolutionary process, first using the theory on an evolutionarily stable viral pathogen vulnerable to vaccine treatment: post-World War II poliomyelitis emerged in the UK and USA from sudden widespread adoption of automobile ownership and usage. We then examine an evolutionarily variable pathogen, swine influenza in North America. The model suggests epidemiological blowback from globalizing intensive husbandry and the raising and shipping of monoculture livestock across increasing expanses, is likely to be far more consequential, driving viral selection for greater virulence and lowered response to biomedical intervention.
Author supplied keywords
Cite
CITATION STYLE
Wallace, R., & Wallace, R. G. (2015). Blowback: New formal perspectives on agriculturally driven pathogen evolution and spread. Epidemiology and Infection, 143(10), 2068–2080. https://doi.org/10.1017/S0950268814000077
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.