Abstract
To study the phenotypic changes in human skin associated with repeated sun exposure at the transcription level, we have undertaken a comparative serial analysis of gene expression of sun-damaged preauricular skin and sun-protected postauricular skin as well as sun-protected epidermis. Serial analyses of gene expression libraries, containing multiple mRNA-derived tag recombinants, were made to poly(A+)RNA isolated from human postauricular skin and preauricular skin, as well as epidermal nick biopsy samples. 5330 mRNA-derived cDNA tags from the postauricular serial analysis of gene expression library were sequenced and these tag sequences were compared to cDNA sequences identified from 5105 tags analyzed from a preauricular serial analysis of gene expression library. Of the total of 4742 different tags represented in both libraries we found 34 tags with at least a 4-fold difference of tag abundance between the libraries. Among the mRNAs with altered steady-state1 levels in sun-damaged skin, we detected those encoding keratin 1, macrophage inhibitory factor, and calmodulin-like skin protein. In addition, a comparison of cDNA sequences identified in the serial analysis of gene expression libraries obtained from the epidermal biopsy samples (5257 cDNA tags) and from both full-thickness skin samples indicated that many genes with altered steady-state transcript levels upon sun exposure were expressed in epidermal keratinocytes. These results suggest a major role for the epidermis in the pathomechanism of largely dermal changes in chronically sun-exposed skin.
Author supplied keywords
Cite
CITATION STYLE
Urschitz, J., Iobst, S., Urban, Z., Granda, C., Souza, K. A., Lupp, C., … Boyd, C. D. (2002). A serial analysis of gene expression in sun-damaged human skin. Journal of Investigative Dermatology, 119(1), 3–13. https://doi.org/10.1046/j.1523-1747.2002.01829.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.