Must analysis of meaning follow analysis of form? A time course analysis

61Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

Many models of word recognition assume that processing proceeds sequentially from analysis of form to analysis of meaning. In the context of morphological processing, this implies that morphemes are processed as units of form prior to any influence of their meanings. Some interpret the apparent absence of differences in recognition latencies to targets (SNEAK) in form and semantically similar (sneaky-SNEAK) and in form similar and semantically dissimilar (sneaker-SNEAK) prime contexts at a stimulus onset asynchrony (SOA) of 48 ms as consistent with this claim. To determine the time course over which degree of semantic similarity between morphologically structured primes and their targets influences recognition in the forward masked priming variant of the lexical decision paradigm, we compared facilitation for the same targets after semantically similar and dissimilar primes across a range of SOAs (34–100 ms). The effect of shared semantics on recognition latency increased linearly with SOA when long SOAs were intermixed (Experiments 1A and 1B) and latencies were significantly faster after semantically similar than dissimilar primes at homogeneous SOAs of 48 ms (Experiment 2) and 34 ms (Experiment 3). Results limit the scope of form-then-semantics models of recognition and demonstrate that semantics influences even the very early stages of recognition. Finally, once general performance across trials has been accounted for, we fail to provide evidence for individual differences in morphological processing that can be linked to measures of reading proficiency.

Cite

CITATION STYLE

APA

Feldman, L. B., Milin, P., Cho, K. W., Moscoso del Prado Martín, F., & O’Connor, P. A. (2015). Must analysis of meaning follow analysis of form? A time course analysis. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00111

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free