Mobile edge computing (MEC) has been considered a promising technology to reduce task offloading and computing delay by enabling mobile devices to offload their computation-intensive tasks. Non-orthogonal multiple access (NOMA) is regarded as a promising method of increasing spectrum efficiency, while Massive multiple-input multiple-output (MIMO) can support a larger number of users for simultaneous offloading. These two technologies can effectively facilitate offloading and further improve the performance of MEC systems. In this work, we propose a NOMA and Massive MIMO assisted MEC system for delay-sensitive applications. Our objective is to minimize the overall computing and transmission delay under users' transmit power and MEC computing capability. Through the pairing scheme for Massive MIMO-NOMA, the users with the higher channel gain can offload all their data, while the users with the lower channel gain can offload a portion of their data to the MEC. Performance results are provided regarding to the sum data rate and overall system delay compared with the orthogonal multiple access (OMA)-MIMO based and Massive MIMO (M-MIMO) based MEC systems.
CITATION STYLE
Yilmaz, S. S., & Ozbek, B. (2023). Massive MIMO-NOMA Based MEC in Task Offloading for Delay Minimization. IEEE Access, 11, 162–170. https://doi.org/10.1109/ACCESS.2022.3232731
Mendeley helps you to discover research relevant for your work.